Use of Photochemical Models to Determine Ozone Removal and Ozone Generation Associated with Agricultural Crops

Overview

- Preparing Model Inputs
 - Emissions
 - Meteorology
 - Observed Data
- Performing Air Quality Modeling
- Assessing Ozone Uptake and Generation Due to Agricultural Crops

Preparing Inputs – Emissions

- Stationary
- Area-wide
- On-Road Mobile
- Off-Road Mobile
- •Biogenic

Emissions Chemistry - Speciation -

- Emissions are Estimated for:
 CO, NO_x, SO_x, TOG, and PM
- Photochemical Models Need Gridded, Hourly Emission Estimates for *Model Species*

Processing Steps

- Calculate Emission Estimate (EF x Activity)
- Spatially Allocate Emissions (Grid-Cell)
- Temporally Allocate Emissions (Hourly)
- Group Emissions of Discrete Chemicals by Reactivity ('Lumped' Specie)
- Format Data for use in Air Quality Model

Agricultural Crop Emissions

Calculated Using ARB's BEIGIS Model

Estimates Hourly Emissions within each Grid Cell

Spatial Allocation

Map of Crops, Plant Species, and Land Use (DWR)
 Overlaid on Modeling System Grid

Emission Factors

- Plant Species Emission Rates (Standard Conditions)
- Adjusted for Temperature & Solar Intensity (Met Model)
- Adjusted for Mass Based on Leaf Area Index (LAI) Data

Crop Emissions (cont.)

Temporal Allocation

 Hourly Meteorological Model Estimates of T and Solar Intensity for each Grid Cell are Utilized

Speciation

 BEIGIS Produces Gridded, Hourly Emission Estimates for Isoprene, Monoterpene, and Methylbutenol

Other Emission Sources

- Natural Area Biogenic Emissions
- Countywide Emission Estimates
 - Stationary Sources (CEIDARS)
 - On-Road Mobile Sources (EMFAC)
 - Off-Road Mobile Sources (OFFROAD)
- Day-Specific Emission Events (Field Data)